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Poynting singularities and their networks in heterogeneously polarized vector field are considered. A new approach for 
experimental modeling of elementary field cells with heterogeneous polarization is proposed. It is shown that such cells may 
be obtained by superposition of orthogonally linearly polarized waves with relatively simple phase surfaces and close 
intensities. The relation between the behavior of intensity and parameters of the transversal component of the Poynting 
vector is analyzed. The experimental results and computer simulation data are presented. 
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1. Introduction 
 
The most well known optical singularities are optical 

(or phase) vortices (see, for example, ref. [1-7], which 
appear in the vicinity of the points, in which the amplitude 
of scalar field has exact zero. The vortices may be 
combined into vortex network, governed by the field phase 
at each field point [3-5]. 

The second type of traditional optical singularities is 
polarization ones [2,5-7,10-13]. 

As it is known C-point is the point, where field is 
circularly polarized. Poincare index of C-point defines the 
rotation direction of ellipses around this point. 
Correspondingly with the sign of this index C-points may 
be either positive or negative. The azimuth and vibration 
phase are indeterminate in the C-point. The rotation 
direction of field vector is indefinite along s-contour, 
because polarization is linear. C-points similarly to the 
vortices may be combined by the lines of constant azimuth 
into some singular network [2,5,7]. 

The last type of coherent singularities are concerned 
with the behavior of Poynting vector transversal 
component [7, 14-16]. They are the singularities of the 
azimuth of Poynting vector transversal component 
(briefly, Poynting singularities, or P-singularities) [17, 18] 
and they are closely connected with optical current [14] 
and magnitude of angular momentum of a field [15,16]. 

Poynting singularity is observed in the field point, 
where x- and y-components of the Poynting vector 
simultaneously achieve the exact zero and the orientation 
of transversal component is indeterminate. 

The typical behavior of transversal component in the 
area of P-singularity is presented in Fig. 1. 

Vortex singularity is presented in Figure 1 (a). It can 
be seen that the circulation of the Poynting component is 
very similar to the one around common phase vortex [14-
16]. The physical consequence of this fact is the maximal 
magnitude of averaged field angular momentum in the 

field area. Vortex P-singularity is additionally 
characterized by chirality, which defines the direction of 
such circulation [7, 17, 18]. 

Passive singularities are in Figure 1 (c)-(d), like star 
(Figure 1 (b),(c)) and saddle ones (Fig. 1 (b)). The 
averaged angular momentum tends to zero in their areas. 

As traditional singularities P-singularities may be 
combined in the network, which governs the behavior of 
Poynting vector in each field point [17]. 

 

 
 

Fig. 1. Typical behavior of the component in the small 
area with Poynting singularity. a – vortex Poynting 

singularity, b-d – passive Poynting singularities 
 
 

The idea of our consideration is based on one of the 
main (in our opinion) statement, which follows from the 
next conception of singular optics: any singular network of 
some field parameter forms the skeleton of this parameter, 
which governs the space distribution of them [17]. 

Let us explain this statement. 
Practically for each space-distributed field 

characteristics the set of singular points may be derived, 
for which this parameter is indeterminate. 
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The topological charge or topological index may be 
defined for each such point. This charge or index 
determines the changes of parameter immediately around 
the singular point. All singular points may be connected by 
specific parameter lines, for example equiphase or 
equiazimuth lines etc. In other words singular network 
may be formed. The information about topological 
characteristics of its elements and location of parameter 
lines determines the behavior of this parameter in each 
field points. 

The quick changes of parameter are observed just in 
the vicinity of a singular point. In other areas the 
characteristics changes smoothly. The saddles points are 
located in these regions. Consequently, if one knows the 
coordinates of a singular point, its topological charge or 
index and the location of, at least, one of specific 
parameter lines then one can estimate the magnitude of the 
parameter (with certain probability) in the point. The 
accuracy of such estimation as a rule may be characterized 
by some physical limitations. 

It has been noted that all singularity systems are 
connected to each other. As a result, it can be stated that 
the behavior of all field parameters in each point is also 
interconnected, at least, in the statistical sense. 

The objective of this paper is: to find out whether the 
above mentioned hypothesis is valid). 

In the first section some important definitions will be 
given and some limitations (or criteria) will be stated. 

In other sections different types of relations between 
different field parameters will be considered. 

 
 
2. Assumptions, limitations, criteria 
 
The main limitations of the performed analysis deal 

with the meaning of rapid changes of different field 
parameters. Obviously this value is closely connected with 
that of the parameter gradient. At the same time the direct 
use of this value is problematic because the gradient 
depends on the wave length, distance from the field 
forming object, dimension of this object, etc. 

Thus, neglecting the similar characteristics influence 
we considered the problem under the following conditions: 

1. The analysis has been performed for far zone. 
Under this assumption the field correlation length is a 
universal field parameter, which defines the scale of 
changes of practically all field characteristics, while the 
field characteristics may be defined only by x and y 
coordinates. 

For example, the basic equations for the analysis of 
the Poynting vector behavior are the following [19]: 
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where iiA Φ, ),( yxi =  – amplitudes and phases of 
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– their partial derivatives, yx Φ−Φ=ΔΦ  – local phase 

difference. 
2. All considered fields were expressed in such 

generalized coordinates: 
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where YcorrXcorr ll ,  – are the correlation lengths along 
x- and y-directions. 

In that case the structure of the analyzed field did not 
depend on wave length, dimension of the scattering object, 
distance between the object and observation plane. 

Obviously the singular network and its structure 
should depend on the level of field polarization 
homogeneity. 

Let us introduce the value – level of integral 
depolarization for characterizing the field polarization 
homogeneity. 

PD −= 1 ,                                   (3) 
 

where P is the degree of “integral” polarization. 
Certainly, the field is polarized completely at any 

point, if the wave is monochromatic and the degree of 
polarization P associated with any field point is unit. At 
the same time, due to the space averaging this value, 
which is associated with some area, is less then unit for the 
field, which is inhomogeneous by polarization. Such a 
value, averaged by space coordinates, will be called the 
degree of “integral” polarization. 

In the case, when mean intensities of orthogonal 
components are equal, the following relation takes place 
[20]: 

γ=+= 2
3

2
2 ssP ,                         (4) 

 
where γ  – correlation coefficient of orthogonal 

components, 32 , ss  – normalized Stokes parameters, and 
correspondingly 

γ−=1D .                              (5) 
 

Let us introduce the criteria for smooth changes of 
different field parameters. 

It has been noted that the choice of such criteria has 
relatively arbitrary nature. Practically a rather accurately 
defined criterion may be formulated on the base of 
Rayleigh criterion [21] (or on the base of the similar one) 
only for phase changes of scalar field. Due to that the 
criteria presented in our paper cannot be regarded as 
“universal” and should be specified for any particular task. 

 
2.1. Smooth changes of polarization 
 
Let us arrange that all limitations will be connected 

with the field area q = corrcorr ll × , which corresponds 
to the unit square for the field presented in generalized 
coordinates. 
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We will assume that polarization changes smoothly in 
some field point if the phase difference and ratio of the 
components amplitudes satisfy the following relations: 
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The example of polarization behavior obeying to 
relations (6) is presented in Figure 2. Grey areas are the 
regions, where polarization changes rapidly. The example 
of such polarization behavior is marked by the rectangle 2. 
Smooth polarization changes are illustrated by rectangles 
1. Additionally the magnitude of the correlation length is 
denoted in the figure. 

 

 
Fig. 2. Polarization changes in the vector field. Grey 

areas are the regions, where polarization changes 
rapidly. 

 
2.2. Smooth changes of intensity and parameters of  
       the Poynting vector 
Let us assume that intensity changes smoothly in 

some field point if the value of its gradient is limited by 
the following relation: 
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I
I
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where I  is mean intensity in the analyzed field area. 
It has been noted that the additional normalization of 

the intensity gradient (division on I ) is necessary because 
the value of the gradient depends on the level of field 
intensity. The field, similar in structure, but with different 
mean intensities, has different gradients. 

The limitation for the changes of Poynting vector 
characteristics may be introduced as follows: 
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for the azimuth of transversal component of the Poynting 
vector, and 
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for the modulus of this component. Like the intensity 
gradient, the gradient of square of transversal component 
modulus is additionally normalized by mean magnitude of 
this value. 
 

3. “Anticorrelation” between polarization and  
     intensity 
 
It can be stated that different by type singularity 

systems are interconnected. Figure 3 illustrates such 
relationship. All types of optical singularities are presented 
in the figure. Percentage in the rectangles of each figure 
corresponds to the level of integral depolarization D. It can 
be seen that different field peculiarities bunch into some 
groups. 

Obvious conclusion immediately follows from this 
fact. Namely, if different singular systems are connected, 
then one can not consider the behavior of all field 
parameters independently, even for random field. 

 

 
 

Fig. 3. Connection between different types of singularities of vector field. 
 

Results of computer simulation. Effective phase 
difference between orthogonal components is equal to 

zero. Percentage in the rectangles of each figure 
corresponds to the level of integral depolarization D. 
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 – P-singularity;  – positive and negative 
vortices of x- and y-components correspondingly;               

 – positive and negative C-points. 
Isaac Freund and colleagues [22, 23] was the first to 

show such relationship between intensity and phase of 
scalar field. 

The similar “anticorrelation” between intensity and 
polarization is observed in the vector field. Such 
anticorrelation must depend on the level of polarization 
homogeneity because similarity of orthogonal components 
increases with the decrease of integral depolarization and 
in case of limitation of uniformly polarized field such 
anticorrelation transforms into the relationship between the 
intensity and phase. 

 

 
 

Fig. 4. Anticorrelation between intensity and polarization 
a – corresponds to the integral depolarization D=5%;               
b – D=40%; c – D=80%; d – D=100%. Light grey areas 
are the regions, where polarization changes quickly. The 
darker ones are the areas, where intensity has relatively 
small  gradient.  Black  regions   represent   the  crossed  
                                       areas. 

 
The connection between polarization and intensity 

depending on the polarization homogeneity is illustrated 
by the results of computer simulation (see Fig. 4). In the 
right upper corner of each figure the integral 
depolarization is marked. Fig. 4 (d) corresponds to 
absolutely random vector field with integral depolarization 
100%. Light grey areas are the regions where polarization 
changes quickly. The darker ones are the area with 
relatively small intensity gradient. Black color corresponds 
to the crossed areas. 

It can be seen that: 
1. Areas with rapid changes of polarization tend to the 

regions with relatively small intensity gradient 
independently on the level of field polarization 
homogeneity. 

2. The square of grey areas with mean depth is 
practically the same for all levels of depolarization. 

3. Squares of light grey and black areas decrease, if 
the polarization homogeneity increases. At the same time 
dark grey square decreases slower than the light one. So, it 
can be stated that interconnection between the behaviors of 
intensity and polarization becomes strict, when field 
becomes homogeneous by polarization. 
 
 

4. “Anticorrelation” between the intensity  
    distribution and behavior of Poynting  
    vector transversal component azimuth 
 
Let us consider the relationship between the intensity 

distribution and Poynting vector parameters. 
The connection between the intensity distribution and 

that of the modulus of transversal component is obvious, 
because, as it is well known that the modulus of Poynting 
z-component is proportional to the intensity (see, for 
example, [15, 20]), and the behavior of the transversal 
component of modulus must be similar. 

The connection between the intensity distribution and 
behavior of component azimuth has different nature. 
 

 
 
Fig. 5. Anticorrelation between intensity and azimuth of 
transversal component of the Poynting vector.                         
a – corresponds to the integral depolarization D=5%;                 
b – D=40%; c – D=80%; d – D=100%. Light grey areas 
are the regions, where azimuth of Poynting transversal 
component changes quickly. The darker ones are the 
areas, where intensity has relatively small gradient. 
Black regions are the crossed areas. The arrows 
illustrate the behavior of Poynting component. Their 
length corresponds to modulus of the component. 
Direction   of   arrows    denotes    the    azimuth    of   the  
                                       component. 
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It is known [17] that C-points and P-singularutues 
may be combined into some pairs. The vortex of Poynting 
singularity is observed in the area of negative C-points. 

The passive Poynting singularities are positioned in 
the area of positive C-points. 

Note that P- and C-singularities are located in the area 
with rapid changes of corresponding field parameters. As a 
result, the consequence of the relationship between P- and 
C-singularities leads to the following. In areas with 
relatively small intensity gradient, azimuth of Poynting 
component must change quickly. 

This assumption was confirmed by computer 
simulation (see Fig. 5). 

Light grey areas are those, where the Poynting 
component azimuth changes quickly. Darker areas are the 
regions with relatively small intensity gradient. Black 
color corresponds to the crossed areas. 

It can be seen that the areas with rapid changes of 
azimuth tend to the regions with relatively small intensity 
gradient, but in contrast to the polarization-intensity 
connection, the square of crossed areas does not depend on 
polarization homogeneity of a field. 
 

 
 

Fig. 6. Positions of P-singularities and areas with 
relatively small intensity gradient. Integral 
depolarization D=30%. Grey areas are the areas, where 
intensity has relatively small gradient.  – P- singularities. 

 
 

In Fig. 6 the positions of P-singularities are presented. 
It can be seen that most of them are located in the areas 
with smooth intensity changes. Correspondingly it can be 
stated that angular momentum of a field achieves its 
minimal and maximal magnitudes right in these regions. 

Integral depolarization D=30%. Light grey areas are 
the regions, where azimuth of Poynting transversal 
component changes quickly. The darker ones are the areas, 
where polarization also changes rapidly. Black regions are 
the crossed areas. 

Note that the Poynting vector orientation coincides 
with z-axis, the preferred direction of wave propagation. 
Thus in 3-D P-singularities form the corresponding lines, 
which define this direction. It can be said that vortex             

P-singularities form helical energy tubes while passive P-
singularities generate still tubes with zero angular 
momentum in each their crossing. 

 
 

 
 

Fig. 7. Correlation between polarization and azimuth 
of transversal component of the Poynting vector. 

 
 
 

Additional consequences, which follow from such 
behavior of Poynting vector, are the following: 

1. “Correlation” between polarization and azimuth 
changes of transversal component must be observed. 

Such statement was conformed by the data of 
computer simulation. Results of them are presented in 
Figure 7. 

2. The following function may be considered a 
characteristic one: 

 
)exp( αjPU t= ,   (10) 

 
where tP  is modulus of Poynting vector transversal 

component, )arctan(
x

y

P
P

=α  is its azimuth.  

It can be shown that U  satisfies the wave 
equation. Thus this function may be associated with some 
scalar filed with amplitude tP  and phase α . As a result 
the “Freund” anticorrelation must be observed, namely in 
areas, where square modulus of Poynting transversal 
component changes smoothly the azimuth changes 
relatively quickly. This fact was conformed by the 
computer simulation. The results of them are presented in 
Fig. 8. 
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Fig. 8. Anticorrelation between azimuth and square of 
Poynting transversal component modulus. 

 
 

Integral depolarization D=30%. Light grey areas with 
rapid changes of component azimuth. The darker areas are 
those, where intensity has relatively small intensity 
gradient. Black ones are the crossed regions. 

Thus, it can be stated that not only all types of optical 
singularities are connected with each other. Different 
optical parameters cannot change independently. 

 
 
5. Conclusions 
 
1. Areas with rapid changes of polarization tend to the 

regions with relatively small intensity gradient. This 
“anticorrelation” becomes strict if polarization 
homogeneity of a field increases. 

2. In areas with relatively small intensity gradient, the 
azimuth of Poynting vector transversal component changes 
quickly. Angular momentum of a field achieves its 
minimal and maximal magnitudes right in these regions. 

3. In areas where modulus of Poynting transversal 
component changes smoothly while the azimuth of this 
component changes relatively quickly. 

4. All field parameters, their singular systems are 
connected. As a result, one can predict (at least 
statistically) the behavior of any field parameter if one has 
information about the characteristics of any singular 
system or characteristics of intensity distribution. 
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